Atmospheric chemistry of (CF3)2C=CH2: OH radicals, Cl atoms and O3 rate coefficients, oxidation end-products and IR spectra.
نویسندگان
چکیده
The rate coefficients for the gas phase reactions of OH radicals, k1, Cl atoms, k2, and O3, k3, with 3,3,3-trifluoro-2(trifluoromethyl)-1-propene ((CF3)2C=CH2, hexafluoroisobutylene, HFIB) were determined at room temperature and atmospheric pressure employing the relative rate method and using two atmospheric simulation chambers and a static photochemical reactor. OH and Cl rate coefficients obtained by both techniques were indistinguishable, within experimental precision, and the average values were k1 = (7.82 ± 0.55) × 10(-13) cm(3) molecule(-1) s(-1) and k2 = (3.45 ± 0.24) × 10(-11) cm(3) molecule(-1) s(-1), respectively. The quoted uncertainties are at 95% level of confidence and include the estimated systematic uncertainties. An upper limit for the O3 rate coefficient was determined to be k3 < 9.0 × 10(-22) cm(3) molecule(-1) s(-1). In global warming potential (GWP) calculations, radiative efficiency (RE) was determined from the measured IR absorption cross-sections and treating HFIB both as long (LLC) and short (SLC) lived compounds, including estimated lifetime dependent factors in the SLC case. The HFIB lifetime was estimated from kinetic measurements considering merely the OH reaction, τOH = 14.8 days and including both OH and Cl chemistry, τeff = 10.3 days. Therefore, GWP(HFIB,OH) and GWP(HFIB,eff) were estimated to be 4.1 (LLC) and 0.6 (SLC), as well as 2.8 (LLC) and 0.3 (SLC) for a hundred year time horizon. Moreover, the estimated photochemical ozone creation potential (ε(POCP)) of HFIB was calculated to be 4.60. Finally, HCHO and (CF3)2C(O) were identified as final oxidation products in both OH- and Cl-initiated oxidation, while HC(O)Cl was additionally observed in the Cl-initiated oxidation.
منابع مشابه
Atmospheric chemistry of CF 3 CF @ CH 2 : Kinetics and mechanisms of gas - phase reactions with Cl atoms , OH radicals , and O 3
Long path length FTIR-smog chamber techniques were used to determine k(Cl + CF3CF@CH2) = (7.03 ± 0.59) · 10 , k(OH + CF3CF@CH2) = (1.05 ± 0.17) · 10 , and k(O3 + CF3CF@CH2) = (2.77 ± 0.21) · 10 21 cm molecule 1 s 1 in 700 Torr of N2, N2/O2, or air diluent at 296 K. CF3CF@CH2 has an atmospheric lifetime of approximately 11 days and a global warming potential (100 yr time horizon) of four. CF3CF@...
متن کاملAtmospheric chemistry of a model biodiesel fuel, CH3C(O)O(CH2)2OC(O)CH3: kinetics, mechanisms, and products of Cl atom and OH radical initiated oxidation in the presence and absence of NOx.
Relative rate techniques were used to study the kinetics of the reactions of Cl atoms and OH radicals with ethylene glycol diacetate, CH3C(O)O(CH2)2OC(O)CH3, in 700 Torr of N2/O2 diluent at 296 K. The rate constants measured were k(Cl + CH3C(O)O(CH2)2OC(O)CH3) = (5.7 +/- 1.1) x 10(-12) and k(OH + CH3C(O)O(CH2)2OC(O)CH3) = (2.36 +/- 0.34) x 10(-12) cm3 molecule-1 s-1. Product studies of the Cl a...
متن کاملTheoretical insight into OH- and Cl-initiated oxidation of CF3OCH(CF3)2 and CF3OCF2CF2H & fate of CF3OC(X•)(CF3)2 and CF3OCF2CF2X• radicals (X=O, O2)
In this study, the mechanistic and kinetic analysis for reactions of CF3OCH(CF3)2 and CF3OCF2CF2H with OH radicals and Cl atoms have been performed at the CCSD(T)//B3LYP/6-311++G(d,p) level. Kinetic isotope effects for reactions CF3OCH(CF3)2/CF3OCD(CF3)2 and CF3OCF2CF2H/CF3OCF2CF2D with OH and Cl were estimated so as to provide the theoretical estimation for future laboratory investigation. All...
متن کاملKinetics and mechanism of the OH-radical and Cl-atom oxidation of propylene carbonate
Rate coefficients have beenmeasured at 298 K and atmospheric pressure for the reaction of OH radicals and Cl atoms with propylene carbonate. The measurements were performed in a large volume photoreactor using in situ FTIR spectroscopy for the analysis. The following rate coefficients (in units of cm per molecule per s) were obtained: k(OH + PC) 1⁄4 (2.52 0.51) 10 12 and k(Cl + PC) 1⁄4 (1.77 0....
متن کاملRate Coefficients of the Reaction of OH with Allene and Propyne at High Temperatures.
Allene (H2C═C═CH2; a-C3H4) and propyne (CH3C≡CH; p-C3H4) are important species in various chemical environments. In combustion processes, the reactions of hydroxyl radicals with a-C3H4 and p-C3H4 are critical in the overall fuel oxidation system. In this work, rate coefficients of OH radicals with allene (OH + H2C═C═CH2 → products) and propyne (OH + CH3C≡CH → products) were measured behind refl...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Physical chemistry chemical physics : PCCP
دوره 17 38 شماره
صفحات -
تاریخ انتشار 2015